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Instability of radial hedgehog configurations in nematic liquid crystals
under Landau–de Gennes free-energy models

E. C. Gartland, Jr.* and S. Mkaddem
Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242

~Received 16 July 1998!

We consider radial hedgehog equilibrium configurations of the tensor order parameter in spherical droplets
of nematic liquid crystals modeled by free energies of the Landau–de Gennes type. We show that such
configurations must become unstable at sufficiently low temperatures in droplets of sufficiently large radii for
all but a very limited range of elastic-constant ratios, which are very near the limit where the elastic-energy
terms in the model cease to be positive definite. The analysis is complicated by the fact that no analytical
solution is available for the hedgehog configuration. Nevertheless, using a combination of analytical bounds
and numerical computation, we are able to construct a perturbation to which we can show that the spherically
symmetric ground state becomes unstable.@S1063-651X~99!02901-3#

PACS number~s!: 61.30.Jf, 61.30.Gd, 64.70.Md
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I. INTRODUCTION

The study of equilibrium structures and defects of co
fined liquid crystals has been an area of interest for so
time. Here we consider spherical droplets of a nematic w
radial strong-anchoring conditions modeled by a Landau
Gennes tensor-order-parameter model. We are motivated
marily by the succession of papers@1–4#. In @1# Schopohl
and Sluckin illustrated for this model the structure of a rad
hedgehog configuration with an isotropic core. Penzensta
and Trebin @2# then showed that the core should inste
broaden to a small ring~or loop! disclination ~of 180° or
strength 1/2!. This was validated numerically by Sonnet, K
ian, and Hess in@3#. Rosso and Virga@4# argued that the
radial hedgehog solution remained at least metastable ov
certain range. Related results are presented in@5–7#.

Motivated by this, we have undertaken a detailed num
cal investigation of this system, on which we will repo
elsewhere. In the numerical modeling of the full system,
have imposedrotational symmetry. There, in addition to the
~spherically symmetric! radial hedgehog and the~axially
symmetric! ring disclination solutions, we found a new
metastable configuration, which also is axially symmet
and which consists of a ‘‘split core’’ with two isotropi
points narrowly separated by a disclination line segm
along its symmetry axis. The three solutions, which coe
over a broad range of parameters, are depicted in Fig
These structures all are quite small, existing within a d
tance from the center of the droplet that is on the order
tens of units of the size of the hedgehog core.

We have computed a bifurcation diagram, Fig. 2, th
indicates how these solutions are connected to each o
Since all three of these tensor fields are forced by symm
to beuniaxial along their rotational symmetry axes~in par-
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ticular at the center of the droplet!, the nature of their orien-
tational order at thecentercan be characterized by the valu
of the scalar order parameterthere. We have used this as
parameter to distinguish the branches of equilibrium so
tions in Fig. 2. This figure is reflective of the common sit
ation of an ‘‘imperfect bifurcation,’’ in which the transcriti
cal bifurcation point of the true~continuous! problem has
separated under discretization into two nearby but dist
branches.

The diagram indicates that at a certaincritical tempera-
ture, the radial hedgehog solution branch becomes unsta
and off of it bifurcate two branches, which break the sphe
cal symmetry. The lower, metastable branch correspond
the split core solution, which is uniaxial with anegative
order parameter at the center; while the upper branch co
sponds to thering disclination, which is uniaxial with aposi-
tive order parameter at the center, and which does not
come metastable until the radius of the ring grows
sufficient size.

In this note, we give a direct argument that the hedgeh
solution must become unstable for sufficiently low tempe
ture provided that the radius of the droplet is sufficien
large and that the elastic constants in the model are not
close to a certain limiting point of their admissible value
We mention that while our numerical modeling of the fu
system imposes rotational symmetry, the analysis that
lows here is general and does not make any such assump

II. MODEL AND SCALINGS

Consider a Landau–de Gennes free-energy functiona
the tensor order parameterQ in the form

at

: FIG. 1. Three equilibrium director profiles in a radially aligne
spherical nematic droplet.
563 ©1999 The American Physical Society
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FªE ~ f el1 f v! dV,

where theelasticandbulk free-energy densities are given b

f elª
L1

2
Qab,gQab,g1

L2

2
Qab,bQag,g1

L3

2
Qab,gQag,b ,

f vª
a

2
tr~Q2!2

b

3
tr~Q3!1

c

4
tr~Q2!2.

We nondimensionalize this model in terms of the leng
scalejªA27cL1 /b2 and rescaled variables

r̃ª
r

j
, Q̃ªA27c2

2b2
Q, F̃ªA 27c3

4b2L1
3
F.

In terms of these~after dropping the tildes!, the densities take
the form

f el5
1

2
Qab,gQab,g1

h2

2
Qab,bQag,g1

h3

2
Qab,gQag,b ,

f v5
t

2
tr~Q2!2A6 tr~Q3!1

1

2
tr~Q2!2,

where

h2ª
L2

L1
, h3ª

L3

L1
, tª

27ac

b2
.

The important dimensionless parameters, then, are
elastic-constant ratiosh2 and h3, reduced temperature t,
and theradius of the droplet in units ofj, which we shall
denote byR.

FIG. 2. Bifurcation diagram of discretized model for split cor
radial hedgehog, and ring disclination configurations. The solid
indicateslocally stable~stable or metastable! equilibria; the dashed
line indicatesunstable. The vertical dotted line indicatestransition
temperature: below this temperature, thering disclination ~upper-
most branch! has minimum free energy; while above it, the fre
energy of theradial hedgehog~isotropic at the origin! is the global
minimum.
he

These units were chosen to permit easy comparison w
@1–4#. In terms oft, the critical values in the bulk aret50
~below which the isotropic phase is unstable!, t51 ~nematic-
isotropic transition temperature!, and t59/8 ~above which
the ordered phase does not exist!. The elastic constantsL1 ,
L2 , andL3 must satisfy certain inequalities in order for th
elastic part of the free energy to be properlypositive definite
~see, for example,@8# or @9#!; in terms ofh2 andh3 , these
take the form

21,h3,2, 6110h21h3.0. ~1!

III. HEDGEHOG SOLUTION

The radial hedgehog solution is distinguished by its co
plete spherical symmetry. It can be represented in sphe
coordinates in the form

H~r ,u,f!5A3
2 h~r !~ êr ^ êr2

1
3 I !. ~2!

Substituting this ansatz into the expression for the free
ergy and performing the integration with respect
sinu du df over the azimuthal and polar angles, one obta
the following expression for the free energy of a droplet
radiusR:

F~H!54pE
0

RH S 11
2

3
h23D F ~h8!21

6

r 2
h2G1g~h!J r 2dr

12p~2h22h3!R h~R!2,

where

h23ªh21h35
L21L3

L1
and g~h!ª

t

2
h22h31

1

2
h4.

Much of what develops with the solutionh(r ) is driven
by thedouble-well potential g(h). This function depends on
the reduced-temperature parametert, and it has a negative
relative minimum, at a certain valueh2,0, for t,0. For t
,1 its global minimum occurs at thepositivevalue

h1ª
31A928 t

4
.

The Euler-Lagrange equation for equilibrium is given b

S 11
2

3
h23D S h91

2

r
h82

6

r 2
hD 2g8~h!50, ~3!

where g8(h)5t h23h212h3. Spherical symmetry forces
h(0)5h8(0)50. We will seek solutions of this singula
nonlinear ordinary differential equation that satisfy the ad
tional condition h(R)5h1 or the limiting form of this,
h(`)5h1 .

An analytical solution for Eq.~3! is not available. How-
ever, it is not hard to obtain accurate numerical solutions
this equation, and these are utilized below. Also, one can
analytical techniques involving ‘‘differential inequalities’’ to
obtain upper and lower bounds for the solution. These p
vide useful information about the behavior of the soluti
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PRE 59 565INSTABILITY OF RADIAL HEDGEHOG . . .
h(r ), and they prove to be adequate to demonstrate its in
bility over a large portion of the parameter space. We
velop this in greater detail in@10# and report here the mai
estimates that we require.

Guided by analysis of the local behaviorh(r )5O(r 2), as
r→0, andh(r )5h12O(1/r 2), as r→`, we can construct
‘‘lower’’ and ‘‘upper solutions’’ to Eq.~3! in the form

a~r !5h1

r 2

r 21la
2

and b~r !5h1

r 2

r 21lb
2

, ~4!

with ‘‘length-scale parameters’’

la
2:5S 11

2

3
h23D 14

2t
,

lb
2:5S 11

2

3
h23D 6

A928 t

1

h1
.

These bound the true solution,

a~r !<h~r !<b~r !, 0,r ,`,

for the semi-infinite interval case:h(`)5h1 . The validity
of this bracketing is established in@10#, where the quality of
the upper/lower bounding solutions also is illustrated.

These bounding functions give~rigorously! the scaling of
the core ~or inner layer! of the hedgehog solution a
O(1/A2t), as t→2`. We require sharp information abou
the behavior of the functionh(r ) in this limit. Motivated by
the above, we seek solutions of Eq.~3! in the scaled form

\~ r̄ !:5
h~r !

h1
, r̄ªA 2t

11 2
3 h23

r . ~5!

Making this substitution and taking the limit ast→2`, we
obtain the ‘‘limiting rescaled problem’’

\91
2

r̄
\82

6

r̄ 2
\1\2\350, 0, r̄ ,`,

\~0!50, \~`!51, ~6!

the solution of which we shall denote by\` . The uniqueness
of the solution to Eq.~6! ~within a certain restricted class!
also is established in@10#.

IV. STABILITY

We seek to demonstrate the instability of the radial hed
hog solution~for R and 2t sufficiently large! by explicitly
constructing a perturbation to which it becomes unsta
Motivated by numerical evidence, the analyses of@2# and
@4#, and the desire to obtain a tractable problem, we cons
tensor fields of the formQ5H1P, whereH is the tensor
field of the radial hedgehog solution, as in Eq.~2!, andP is a
perturbation of the form

P~r ,u,f!5A3
2 p~r !~ êz^ êz2

1
3 I !.
ta-
-

-

e.

er

Expanding F(H1P) and integrating with respect to
sinu du df, one obtains the following weak form of thesec-
ond variation:

4pE
0

R

$~11 1
3 h23!~p8!21@ t1 14

5 h2~r !#p2%r 2dr.

We will know that the hedgehog solution is unstable if w
can construct a functionp(r ) that produces anegativevalue
for this integral.

We normalize and recast theinstability conditionas

inf
p

E
0

R

@~11 1
3 h23!~p8!21 14

5 h2~r ! p2# r 2 dr

E
0

R

p2r 2 dr

,2t,

where the infimum is taken over smooth functionsp satisfy-
ing p(R)50. Rescaling as before in Eqs.~5!, renormalizing,
and taking limits ast→2`, we obtain the scaled limiting
form of the instability condition:

lmin~«!ª inf
p̄

«E
0

`

~ p̄8!2r̄ 2 dr̄1E
0

`

\`
2 ~ r̄ ! p̄2r̄ 2 dr̄

E
0

`

p̄2r̄ 2 dr̄

,
5

7
,

~7!

where the ‘‘coupling coefficient’’« is given by

«ª
5

7

11 1
3 h23

11 2
3 h23

.

This parameter is adecreasingfunction of h23: 23/2,h23
,`↔`.«.5/14. Here we have also extended the integ
tion to the limit R→`.

One can show that the instability condition for finiteR
and t depends continuously on («,R,t) ~see@10#!. We con-
clude that if the~scaled limiting! instability condition~7! is
satisfied for some«, then the finite instability condition will
be satisfied for allR.R0 andt,t0 , for someR0 , t0 , which
may depend on«.

The valuelmin(«) corresponds to a spherically symmetr
Schrödinger eigenvalue problem with potential\`

2 ( r̄ ). The

form of \`( r̄ ) is illustrated in Fig. 3 together with the asso
ciated principal modep̄( r̄ ), which produces the minimum
value in Eq.~7!. The value oflmin(«) increases with«, rang-
ing over 0,lmin,`, for 0,«,`. We define «* via
lmin(«* )55/7. Then we will havelmin(«),5/7 if and only if
«,«* , in which case the hedgehog tensor fieldH will be
unstable to a perturbationP in our class.

Lower bounds for«* can be derived by bounding\`( r̄ )
from above by the limiting form of the rescaled upp
bounding function from Eq.~4!,

\`~ r̄ !<b̄`~ r̄ !5
r̄ 2

r̄ 213
,
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566 PRE 59E. C. GARTLAND, JR. AND S. MKADDEM
and evaluating the Rayleigh quotient in Eq.~7! on particular
test functionsp̄( r̄ ). After some trial and error, we obtain th
function

p̄~ r̄ !5
1

~ r̄ 2112!2
,

which mimics the principal mode of Eq.~7! ~with \` re-
placed byb̄` and «'1) and for which the integrals ther
take a simple form and give

lmin~«!<
« 3

16 1 28
81

3
4

.

From this follows

«* > 1724
1701 81.014 and h23* <2 1527

2233 820.684.

These rigorous, purely analytical estimates are suffic
to treat the two-constant (L350) model, for which we must
have, by virtue of the conditions~1!, h23.23/5 ~and as a
consequence«,20/21). That is, in theL350 model~as con-
sidered, for example, in@2#!, for any admissible values of th
elastic constantsL1 andL2 , the radial hedgehog configura
tion must become unstable at sufficiently low temperature
a droplet of sufficiently large radius.

In the full model~with L1 , L2, and L3), the restriction on
the elastic-constant ratios ish23.23/2, and so the range o
admissible values for« is 5/14,«,`. Our instability con-
dition must fail for« large enough, i.e., forh23 sufficiently
close to23/2. We resort to numerical calculations to obta
sharper estimates. We calculate\`( r̄ ) by solving numeri-
cally the problem~6!. Using this, we then discretize the e
genvalue problem associated with Eq.~7!,

FIG. 3. Rescaled limiting form of radial hedgehog soluti

~‘‘inner solution’’! \`( r̄ ) vs the minimum eigenmodep̄( r̄ ) in the
instability criterion for two cases of the coupling coefficient:«51
and«54.
nt

n

«S p̄91
2

r̄
p̄8D 1@l2\`

2 ~ r̄ !# p̄50, 0, r̄ ,`,

p̄8~0!50, p̄~`!50,

and calculate the minimum eigenvalue using library so
ware. We obtain

«* 81.720 and h23* 821.107.

V. CONCLUSIONS

Thus we have shown that the hedgehog equilibrium so
tion must be unstable at sufficiently low temperatures a
sufficiently large radii of the droplet for all but this sma
region of admissible elastic constants,21.5,h23<h23* .
These various regions of instability and limits are depicted
Fig. 4. This instability region is only a ‘‘lower bound’’ on
the true range of elastic-constant ratios for which the hed
hog will be unstable; the region can only grow as one bro
ens the class of perturbations. The analysis suggests the
sibility that the radial hedgehog may in fact become unsta
for all admissible values of the elastic constants.

In considering the papers that we have cited previou
we find that our most direct comparisons can be made w
@6# and @4#. In @6# Cohen and Taylor used a Frank elas
model, for which the radial hedgehog solution takes the fo
of the pure-splay distortionn̂(r ,u,f)5êr. They found, in
terms of our parameters, that the hedgehog solution is m
stable against the uniaxial perturbations admitted by Fran
model if and only ifh23,2/7. Rosso and Virga@4# consid-
ered the same Landau–de Gennes model we have used
however, they used a certain ‘‘outer approximation’’ for th
~unknown! hedgehog solution. They then investigated me
stability with respect to particular classes of perturbatio
which differ somewhat from the ones we have used he

FIG. 4. Region of instability for radial hedgehog configuratio
in terms of elastic-constant ratiosh25L2 /L1 , h35L3 /L1 . The
hedgehog is proven here to be unstable throughout the entire ad
sible range (21,h3,2, 6110h21h3.0) with the exception of
the hashed region near the lower left corner above. Analyt
bounds are sufficient to produce the outer enclosureh21h3<
21527/2233 of this excluded portion.
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They found the approximate hedgehog to be unstable~for a
sufficiently large radius! if 1 12h21h3.0. The instability
region we obtain here contains the regions from both of th
papers.

As a final point, we mention that while the analysis w
conducted on a certain limiting problem~in the doubly infi-
nite limit R→`, t→2`), the reality is that these phenom
ena are observed numerically for rather modest values
these variables:R'10, t'25 ~as is seen in the figures!.
e
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