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Instability of radial hedgehog configurations in nematic liquid crystals
under Landau—de Gennes free-energy models
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We consider radial hedgehog equilibrium configurations of the tensor order parameter in spherical droplets
of nematic liquid crystals modeled by free energies of the Landau—de Gennes type. We show that such
configurations must become unstable at sufficiently low temperatures in droplets of sufficiently large radii for
all but a very limited range of elastic-constant ratios, which are very near the limit where the elastic-energy
terms in the model cease to be positive definite. The analysis is complicated by the fact that no analytical
solution is available for the hedgehog configuration. Nevertheless, using a combination of analytical bounds
and numerical computation, we are able to construct a perturbation to which we can show that the spherically
symmetric ground state becomes unstaf$4.063-651X99)02901-3

PACS numbe(s): 61.30.Jf, 61.30.Gd, 64.70.Md

[. INTRODUCTION ticular at the center of the drop)ethe nature of their orien-
tational order at theentercan be characterized by the value
The study of equilibrium structures and defects of con-Of the scalar order parametethere. We have used this as a
fined liquid crystals has been an area of interest for som@arameter to distinguish the branches of equilibrium solu-
time. Here we consider spherical droplets of a nematic witd!ons in Fig. 2. This figure is reflective of the common situ-
radial strong-anchoring conditions modeled by a Landau—d&t" Of an “imperfect bifurcation,” in which the transcriti-
Gennes tensor-order-parameter model. We are motivated prifa\I bifurcation point of 'ghe _truélcontlnuou$ problem hgs'
. . eparated under discretization into two nearby but distinct
marily by the succession of papdrs—4]. In [1] Schopohl

branches.
and Sluckin illustrated for this model the structure of aradial  The diagram indicates that at a certairitical tempera-

hedgehog configuration with an isotropic core. Penzenstadlgqre, the radial hedgehog solution branch becomes unstable,
and Trebin[2] then showed that the core should insteadand off of it bifurcate two branches, which break the spheri-
broaden to a small rindgor loop disclination (of 180° or  cal symmetry. The lower, metastable branch corresponds to
strength 1/2 This was validated numerically by Sonnet, Kil- the split core solution, which is uniaxial with anegative
ian, and Hess if3]. Rosso and Virgd44] argued that the order parameter at the center; while the upper branch corre-
radial hedgehog solution remained at least metastable overs®0nds to theing disclination which is uniaxial with gosi-
certain range. Related results are presentd@-v]. tive order parameter at the center, and which does not be-
Motivated by this, we have undertaken a detailed numerigamgemest?zséable until the radius of the ring grows to
cal investigation of thls'system, on which we will report In this note, we give a direct argument that the hedgehog
elsewhere. In the numerical modeling of the full system, weg

h ) ) o ution must become unstable for sufficiently low tempera-
have imposedotational symmetryThere, in addition to the  yre provided that the radius of the droplet is sufficiently

(spherically symmetric radial hedgehog and théaxially  |arge and that the elastic constants in the model are not too
symmetrig ring disclination solutions, we found a new, close to a certain limiting point of their admissible values.
metastable configuration, which also is axially symmetricWe mention that while our numerical modeling of the full
and which consists of a “split core” with two isotropic sSystem imposes rotational symmetry, the analysis that fol-
points narrowly separated by a disclination line segmentows here is general and does not make any such assumption.
along its symmetry axis. The three solutions, which coexist

over a broad range of parameters, are depicted in Fig. 1. IIl. MODEL AND SCALINGS

These structures all are quite small, existing within a dis-  consider a Landau—de Gennes free-energy functional of
tance from the center of the droplet that is on the order othe tensor order parametérin the form

tens of units of the size of the hedgehog core.

We have computed a bifurcation diagram, Fig. 2, that P . o
indicates how these solutions are connected to each other.
Since all three of these tensor fields are forced by symmetry ._ _
to beuniaxial along their rotational symmetry axé® par- 'i
*
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8 ' ' - ' ' T These units were chosen to permit easy comparison with
: [1-4]. In terms oft, the critical values in the bulk are=0
(below which the isotropic phase is unstgbte= 1 (nematic-
isotropic transition temperatyreand t=9/8 (above which
the ordered phase does not exigthe elastic constants, ,
L,, andLz must satisfy certain inequalities in order for the
elastic part of the free energy to be propesbsitive definite
(see, for exampld,8] or [9]); in terms of », and 53, these
take the form

Scalar Order Parameter at Center

—1<n3<2, 6+10%,+ n3>0. (1)

IIl. HEDGEHOG SOLUTION

SPLIT CORE

: The radial hedgehog solution is distinguished by its com-
T2 o = " = = o 2 plete spherical symmetry. It can be represented in spherical
Fleduced Temperature coordinates in the form

FIG. 2. Bifurcation diagram of discretized model for split core, A
radial hedgehog, and ring disclination configurations. The solid line H(r,0,¢)= \/g h(r)(e®e— 31). (2
indicateslocally stable(stable or metastablequilibria; the dashed
line indicatesunstable The vertical dotted line indicatesansition ~ Substituting this ansatz into the expression for the free en-
temperature below this temperature, théng disclination (upper-  ergy and performing the integration with respect to
most branch has minimum free energy; while above it, the free sind dd d¢ over the azimuthal and polar angles, one obtains
energy of theadial hedgehodisotropic at the originis the global  the following expression for the free energy of a droplet of

minimum. radiusR:
R 2 6
Fe=| (fgt+f,)dV, f(H)=4wf 1+ 372 (h")?+—h?|+g(h) r?dr
0 r
where theelasticandbulk free-energy densities are given by +27(279,— 73)R N(R)Z,
Ly Lo Ls where
fe|:=? Qa,B,'yQaB,y+ ?Qaﬂ,BQay,y_F ?Qaﬂ,'yQa‘y,le

Lo+Ls t ., . 1,
a b c No3=12+ 1713= 3 and g(h):zih —h +§h _
fu=5tr(Q) — Q%)+ ()2 1
i ; : . . Much of what develops with the solutidm(r) is driven
We nondimensionalize this model in terms of the lengthpby thedouble-well potential ¢h). This function depends on

scale¢:=/27cL,/b? and rescaled variables the reduced-temperature paramedteand it has a negative
relative minimum, at a certain valle_ <0, for t<0. Fort
L [27c? 5 [ 27 <1 its global minimum occurs at thgositivevalue
T - 2 - 237"
2b 4b°Ly i 34+ /9-81
+:=—_

In terms of theséafter dropping the tildesthe densities take 4

the form
The Euler-Lagrange equation for equilibrium is given by

1 72 73
felzzQaﬁ,yQaﬁ,'y—’_ TQaﬁ,BQay,y+ TQaﬁ,yQa%ﬁa

2
1+§7723

2 6
h”+—h’——h) —g'(h=0,
r r2

t 1
=— 2) — 3y — 212
f=3t(Q) Vo tr(QY)+ 7 1Q)% where g’ (h)=t h—3h2+2h3. Spherical symmetry forces

h(0)=h’(0)=0. We will seek solutions of this singular

where nonlinear ordinary differential equation that satisfy the addi-
tional condition h(R)=h, or the limiting form of this,
L, Ls _27&0 h(00)=h+ .

=, =, ti— . . . . .
2 L, 73 L, b2 An analytical solution for Eq(3) is not available. How-

ever, it is not hard to obtain accurate numerical solutions to
The important dimensionless parameters, then, are thihis equation, and these are utilized below. Also, one can use
elastic-constant ratiosp, and 3, reduced temperature, t analytical techniques involving “differential inequalities” to
and theradius of the droplet in units of, which we shall obtain upper and lower bounds for the solution. These pro-
denote byR. vide useful information about the behavior of the solution
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h(r), and they prove to be adequate to demonstrate its instd&=xpanding F/(H+P) and integrating with respect to
bility over a large portion of the parameter space. We desind dd d¢, one obtains the following weak form of thsec-
velop this in greater detail if10] and report here the main ond variation
estimates that we require.

Guided by analysis of the local behaviofr) =0(r?), as R 1 2 14,2 2
r—0, andh(r)=h, —O(1/r?), asr—, we can construct a4 0 {1+ 3729 (p") "+ [T+ Fh™(r) pZrdr.
“lower” and “upper solutions” to Eq.(3) in the form

We will know that the hedgehog solution is unstable if we

2 2 . .
_ r _ r can construct a functiop(r) that produces aegativevalue
a(r)—h+r g and ﬁ(r)—h+r2+)\é, @ for this integral.
“ We normalize and recast thiestability conditionas
with “length-scale parameters”
R 1 2 14,2 2 2
N [Tt dm o2 020 200
2._ - .
)\a'_ 1+37723)_t , inf R _t,
P f p?r? dr
0
) 2 6 1
B 3 9-gt h. where the infimum is taken over smooth functignsatisfy-
ing p(R)=0. Rescaling as before in Eg&), renormalizing,
These bound the true solution, and taking limits ag— —<, we obtain the scaled limiting

form of the instability condition:
a(r)sh(r)<spg(r), 0<r<eo,

for the semi-infinite interval caséi()=h_ . The validity Sfo (p')’r#dr+ fo hi(r) p?r? dr 5

of this bracketing is established [fh0], where the quality of Amin(€) :=inf — ,

the upper/lower bounding solutions also is illustrated. ) J azr_z dr 7
These bounding functions giegorously the scaling of 0

the core (or inner layey of the hedgehog solution as (7)

O(1/{-t), ast——=. We require sharp information about _ N o
the behavior of the functioh(r) in this limit. Motivated by ~ Where the “coupling coefficients is given by
the above, we seek solutions of E) in the scaled form

5 1+ 373

— h(r — -t gi=g — .
fi(r):= ( ), Fe=~[——T. (5) 71+ 53
hy 1+ 5 723

_ _ o _ o This parameter is decreasingunction of 7,3: —3/2<73
Making this substitution and taking the limit &s> —c, we <o 0>g>5/14. Here we have also extended the integra-
obtain the “limiting rescaled problem” tion to the limit R—oo.

One can show that the instability condition for finie
andt depends continuously or: (R,t) (see[10]). We con-
clude that if the(scaled limiting instability condition(7) is
satisfied for some, then the finite instability condition will
£(0)=0, #i(x)=1, 6) be satisfied for alR>R, andt<t,, for someR,, ty, which

may depend om.

the solution of which we shall denote By, . The uniqueness '€ Valuék min(e) corresponds to a spherically symmetric
of the solution to Eq(6) (within a certain restricted class Schralinger eigenvalue problem with potentiaf (r). The

2 6 _
h”+:ﬁ’—:2ﬁ+ﬁ—h3=0, 0<r <o,
r r

also is established ifl0]. form of #..(r) is illustrated in Fig. 3 together with the asso-
ciated principal mode(r), which produces the minimum
IV. STABILITY value in Eq.(7). The value ofA ,,i,(¢) increases witl, rang-

. _ T
We seek to demonstrate the instability of the radial hedge'—ng over 0<Amp=ce, for O=e<x. We defines” via

o : X i
hog solution(for R and —t sufficiently large by explicitly }\zi”(f )iﬁ,%}ghhecgsvéetﬁvé"hh:f;ﬂg(s)t;?gr'ffﬂg\,mlﬁg
constructing a perturbation to which it becomes unstable’ % l:’»l bation | 9 | Y
Motivated by numerical evidence, the analyses[2ff and Unstable to a perturbation in our c_ass. -
[4], and the desire to obtain a tractable problem, we consider LOWer bounds fore* can be derived by bounding..(r)
tensor fields of the formQ=H+ P, whereH is the tensor rom above by the limiting form of the rescaled upper
field of the radial hedgehog solution, as in E2), andPisa  Pounding function from Eq4),

perturbation of the form

P(r.6,6)= 2 p(r) (8,8, 31).
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FIG. 3. Rescaled limiting form of radial hedgehog solution

(“inner solution”) #..(r) vs the minimum eigenmodp(r) in the
instability criterion for two cases of the coupling coefficieat: 1

ande=4.

and evaluating the Rayleigh quotient in E@) on particular
test functiongp(r). After some trial and error, we obtain the

function

which mimics the principal mode of Eq7) (with fi.. re-
placed byB.. and e~1) and for which the integrals there

take a simple form and give
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From this follows

g*= 151=1.014 and ni<-—
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FIG. 4. Region of instability for radial hedgehog configuration
in terms of elastic-constant ratiog,=L,/L,, 73=L3/L,. The
hedgehog is proven here to be unstable throughout the entire admis-
sible range ¢ 1<#3<2, 6+ 107,+ 73>0) with the exception of
the hashed region near the lower left corner above. Analytical
bounds are sufficient to produce the outer enclosgye 7;<
—1527/2233 of this excluded portion.

(_%7 _1)

+[A=#2(r)]p=0, 0<r<,

€

A 2_/
p+=p
r

p’(0)=0, p(*)=0,

and calculate the minimum eigenvalue using library soft-
ware. We obtain

e*=1.720 and 73;=-1.107.

V. CONCLUSIONS

Thus we have shown that the hedgehog equilibrium solu-
tion must be unstable at sufficiently low temperatures and
sufficiently large radii of the droplet for all but this small
region of admissible elastic constants,1.5< 7y3=< 753.
These various regions of instability and limits are depicted in
Fig. 4. This instability region is only a “lower bound” on
the true range of elastic-constant ratios for which the hedge-
hog will be unstable; the region can only grow as one broad-

These rigorous, purely analytical estimates are sufficiengns the class of perturbations. The analysis suggests the pos-

to treat the two-constant.g=0) model, for which we must
have, by virtue of the condition€l), 7,5>—3/5 (and as a
consequence<20/21). That s, in th& ;=0 model(as con-

sibility that the radial hedgehog may in fact become unstable
for all admissible values of the elastic constants.
In considering the papers that we have cited previously,

sidered, for example, if2]), for any admissible values of the we find that our most direct comparisons can be made with
elastic constantk; andL,, the radial hedgehog configura- [6] and[4]. In [6] Cohen and Taylor used a Frank elastic
tion must become unstable at sufficiently low temperature irmodel, for which the radial hedgehog solution takes the form

a droplet of sufficiently large radius.

In the full model(with L4, L,, and Lg), the restriction on
the elastic-constant ratios i#g,5> — 3/2, and so the range of
admissible values fog is 5/14<e<<oo., Our instability con-
dition must fail fore large enough, i.e., for,; sufficiently

of the pure-splay distortiom(r,,$)=e.. They found, in
terms of our parameters, that the hedgehog solution is meta-
stable against the uniaxial perturbations admitted by Frank’s
model if and only if ,3<2/7. Rosso and Virg§4] consid-

ered the same Landau—de Gennes model we have used here;

close to—3/2. We resort to numerical calculations to obtain however, they used a certain “outer approximation” for the

sharper estimates. We calculdte(r) by solving numeri-

(unknown hedgehog solution. They then investigated meta-

cally the problem(6). Using this, we then discretize the ei- stability with respect to particular classes of perturbations,

genvalue problem associated with Ed),

which differ somewhat from the ones we have used here.
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